
Müllerstrasse 64, 8004 Zürich, 043 311 59 15

Long-term Preservation of Relational Databases
What needs to be preserved how?

Version: 1.0

Source: http://www.enterag.ch/hartwig/SIARD_Criterion.pdf

License:
http://creativecommons.org/licenses/by-sa/3.0/ch/deed.en_US

15. January 2013

Author: Dr. sc. math. Hartwig Thomas, Enter AG

Seite 1/18

Enter AG

http://www.enterag.ch/hartwig/SIARD_Criterion.pdf
http://creativecommons.org/licenses/by-sa/3.0/ch/deed.en_US

Long-term Preservation of Relational Databases – What needs to be preserved how?

LONG-TERM PRESERVATION OF RELATIONAL DATABASES

What needs to be preserved how?

Table of Contents
Long-term Preservation Of Relational Databases..2

1 Introduction...3

2 The Problem Of Long-Term Preservation...3
2.1 Code and Data... 3
2.2 Relational Databases.. 4

3 Emulation – Migration – Normalization...4
3.1 Emulation... 5
3.2 Migration.. 5
3.3 Normalization... 6
3.4 Why is Normalization preferable to Migration or Emulation?..7

4 What Needs To Be Archived?..7
4.1 Criterion of Complete Preservation...8

5 SIARD Format Requirements...11
5.1 The SIARD format must store a complete database in a single file..11
5.2 The SIARD format must treat all data accessible to an archival user using SQL as a complete

database... 11
5.3 The SIARD format must be based on open standards...11
5.4 The SIARD format must store all primary data completely..11
5.5 The SIARD format must contain technical meta data about all tables and columns.................11
5.6 The SIARD format should contain all meta data about database keys.......................................12
5.7 The SIARD format may contain meta data about all other SQL:1999 objects............................12
5.8 The SIARD format must not contain any information specific to an institution........................12
5.9 The SIARD format should enable integrity control of the primary data......................................12

6 SIARD File Structure...12
6.1 Folders header and content...12
6.2 Schema Folders... 13
6.3 Table Folders... 13
6.4 Large Object Folders... 13
6.5 Integrity of the Data, Formerly Called Authenticity..13
6.6 Validity.. 13
6.7 The Problem of Binary Large Objects...14

7 The Mapping Of SQL To XML..14
7.1 Correctness of Character String Preservation..14
7.2 Correctness of Preservation of Dates and Times...14
7.3 Correctness of Integer Preservation..15
7.4 Correctness of Preservation of Decimal Types..15
7.5 Correctness of Preservation of Floating Point Types..15
7.6 Correctness and Preservation of Identifiers...15

8 SQL Objects Other Than Tables..15
8.1 Keys.. 15
8.2 Views.. 16
8.3 Constraints and Triggers..16
8.4 Routines... 16
8.5 Permissions... 16
8.6 Applications... 17

9 SIARD Format And SIARD Suite..17
9.1 Guiding Principle for SIARD Suite: All Databases can be Archived..17

10 How To Achieve Preservation..18

January 15, 2013 Seite 2/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

1 INTRODUCTION

The author of this article has defined, designed and implemented a system for the long-term
preservation of relational databases for the Swiss Federal Archives1. This system SIARD (for
Software-Independent Archiving of Relational Databases) consists of a file format definition
(SIARD format) and a “reference implementation” (SIARD Suite) for converting relational data-
bases to normalized SIARD files and for uploading SIARD files to database systems for re-
search using SQL queries of any desired complexity.

In this connection he has been confronted with questions like the following:

– Which aspects of a relational database need to be preserved?

– How can one judge the quality of the preservation system?

– What are the characteristic attributes of a database?

– Why does your system not restore database triggers?

– Why does your system not check consistency and reject some databases not conform-
ing to our standards of database design?

– How can one check the validity of an archived database file?

– How can one check its integrity?

This article will attempt to answer these questions and many more.

2 THE PROBLEM OF LONG-TERM PRESERVATION

Many people believe, that the limited life-time of storage devices like tape, CD-ROM or solid-
state drives is the main problem for the long-term preservation of digital content. In reality, how-
ever, this problem is easily solved in a digital world, where perfect copies of any number of
bytes are almost for free.

A professional archive will upgrade its storage devices from time to time and copy the archived
bits to the new devices. It will store its content redundantly in three or more copies so that
preservation is secured should any of the storage locations by physically damaged. It will moni-
tor the identity of those copies regularly and fix any problems, that are detected.

The real problem of long-term preservation is the question of the usability of the archived bits. If
the structure of these bits is only understood by proprietary software, it is unlikely that this soft-
ware will be available after a reasonably long period of time. Typically archived data are acces-
sible to the general public some 50 years after they were archived and should remain so for an-
other 50 years. In this paper “long-term preservation” means preservation for at least 50-100
years.

2.1 Code and Data

Experience of the technical developments in the last 50 year shows that it is very unlikely that
today's software will run and be usable on systems (hardware and software) available in 50-100
years from now. Even if you use a perfect DOS emulation program under Windows 8 today, it
can hardly guess which printer driver was buried in the Word 2 file from 1988. But even if the
emulation were able to do a perfect job, anybody today would find it very hard, if not impossible,
to use Word 2 today. Which function key was used for which activity? So we conclude – at least
until a durable standard of a digital software system emerges:

Code cannot be archived.

The case for data is slightly better. If we open an ASCII file that was created 50 years ago in an
editor, we can still read it. If we play an old CD-Audio, that was bought 30 years ago, it is still
played correctly. The reason for this durability of some data is the open standardization of for-

1http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en

January 15, 2013 Seite 3/18

http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en

Long-term Preservation of Relational Databases – What needs to be preserved how?

mats. As long as the interpretation of the archived bits is not forgotten, programs can be written
to make them available on new hardware in new software environments.

Many institutions are obliged by law to preserve and be able to access their data for long peri-
ods of time. They all have experienced many upgrades of their IT environments which needed
to make sure that access to the old data remained intact:

Data have a far longer life-expectancy than code.

Therefore there is a chance, that data can be preserved in archives over 50-100 years or
longer. But this requires a careful archival strategy. Many of us already have lost plenty of data
in the relatively short time of our digital lives.

2.2 Relational Databases

That data live longer than code was recognized relatively early in the history of computers.
Around 1970 this led Edgar F. Codd to develop the so-called relational model for databases,
which was designed to help separate code from data1. Today relational databases are the back-
bone of almost all government activity. For a short time there was a flurry of so-called ob-
ject-oriented databases in the 90s of the last century, which cannot be preserved in the long-
term, because they mix code and data inextricably. This hype did not last and the vast majority
of all databases in use today are relational databases2.

So the problem arises, how may relational databases be preserved?

3 EMULATION – MIGRATION – NORMALIZATION

Currently the discussion about archival of digital material is dominated by the two strategies
Emulation and Migration. We propose to add Normalization as a third option.

Emulation as an archival strategy considers the machine used to access the archived materials
like a film projector that must be used for watching archived movies. So, for example, computer
games for DOS are preserved by preserving the DOS hardware or a simulation of it. This ap-
proach does not take into account that a computer is a general-purpose, universal machine,
whereas a projector serves a single special purpose.

Migration as an archival strategy advocates transforming the archived materials into a new for-
mat whenever their format is not supported anymore by the archive's IT environment.

Normalization as an archival strategy aims to keep archived material unchanged forever. This is
possible, if the material is archived in a “normal” form for the type of objects archived. For ex-
ample any image format, that is documented in open standards and permits the reconstruction
of the color of each spot on a picture can be used for normalization of picture data. Based on
this standard, anybody can program a denormalization into image formats suitable for viewing
the archived images 50-100 years from now. Similarly any format describing the color of each
spot as well as the frequency and intensity of sound at any moment of time of a moving picture
can be used for normalizing video content. The same is true for audio content, where the CD
audio format is an excellent candidate for normalization because of its widespread use. The
only issue in these cases is the choice of resolution which must be high enough, so the infor-
mation lost by quantization will not be regretted in the future.

The case of text documents, spread sheets and presentations is somewhat more complex, be-
cause the exact extent of these types of objects is not universally defined today. In spite of mi-
nor disagreement, some promising ISO standards for “office” documents (ODF, OOXML) have
been developed in the last decade and show a marked tendency to converge.

1For a historical account see: C. J. Date: The Database Relational Model, A Retrospective Review and
Analysis, Addison Wesley,2000,

http://www.amazon.de/The-Database-Relational-Model-Retrospective/dp/0201612941
2For a comprehensive introduction to relational databases see: C. J. Date: An Introduction to Database
Systems, Eighth Edition, Pearson Education Inc., 2004,

http://www.amazon.de/Introduction-Database-Systems-Chris-Date/dp/0321197844

January 15, 2013 Seite 4/18

http://www.amazon.de/Introduction-Database-Systems-Chris-Date/dp/0321197844
http://www.amazon.de/The-Database-Relational-Model-Retrospective/dp/0201612941

Long-term Preservation of Relational Databases – What needs to be preserved how?

3.1 Emulation

For digital objects of the type “relational database” emulation means to preserve the database
data as well as the database application on the original software platforms – which are possibly
“emulated” on future hardware. Preservation boils down to keeping a running environment
available for each preserved object. In the recent past this strategy would have necessitated
the availability of various emulations and experts in the archive and for the dissemination:

Year Submission

uses

Archive

hires

Dissemination

needs

1997 Oracle 8 1. DBA Oracle 8 client

2000 SQL Server 2000 2. DBA Oracle 8 client and SQL Server 2000 client

2002 MySQL 4 3. DBA Oracle 8 client and SQL Server 2000 client and MySQL
4 client

2003 Oracle 9 Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client

2005 SQL Server 2005 Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client

2006 Oracle 10 4. DBA Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client
and Oracle 10 client

2008 Oracle 11 Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client
and Oracle 10 client and Oracle 11 client

SQL Server 2008 5. DBA Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client
and Oracle 10 client and Oracle 11 client and SQL
Server 2008 client

MySQL 5 6. DBA Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client
and Oracle 10 client and Oracle 11 client and SQL
Server 2008 client and MySQL 5 client

2012 SQL Server 2012 Oracle 8 client and SQL Server 2000 client and MySQL
4 client and Oracle 9 client and SQL Server 2005 client
and Oracle 10 client and Oracle 11 client and SQL
Server 2008 client and MySQL 5 client and SQL Server
2012 client

Extrapolate this table until 2060!!

Only emulations of servers and clients are required. But their use requires know-how of the us-
age of old software for database administrators (DBA) and users of the client software of the
archive!

3.2 Migration

For relational databases the migration approach probably would mean to archive the dump for-
mat of the database products. The following activities and capabilities would have been needed
by archives and dissemination agents in the recent past:

January 15, 2013 Seite 5/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

Year Submission

creates

Archive

migrates and hires

Dissemination

restores

1997 dump to Oracle 8
dump files

store Oracle 8 dump file

1. DBA

restore Oracle 8 dump

2000 dump to SQL Script
with SQL Server
2000 types

store SQL Script with
SQL Server 2000 types

2. DBA

restore Oracle 8 dump and restore SQL
Server 2000 dump

2002 dump to SQL Script
with MySQL 4 types

Store SQL Script with
MySQL 4 types

3. DBA

restore Oracle 8 dump and restore SQL
Server 2000 dump and MySQL 4 dump

2003 dump to Oracle 9
dump files

migrate all Oracle 8
dump files in the archive
to Oracle 9 dump file
format / store Oracle 9
dump file

restore Oracle 9 dump and restore SQL
Server 2000 dump and MySQL 4 dump

2005 dump to SQL Script
with SQL Server
2005 types

migrate all SQL Server
2000 dump files to sup-
port the new SCHEMA
creation

restore Oracle 9 dump and restore SQL
Server 2005 dump and MySQL 4 dump

2008 dump to Oracle 10
dump files / dump to
SQL Server 2008
dump files / dump to
MySQL 5 dump files

migrate all Oracle 9
dump files to Oracle 10
dump file format / mi-
grate all SQL Server
2005 dump files to SQL
Server 2008 dump for-
mat / migrate all MySQL
4 dump files to MySQL 5
format

restore Oracle 10 dump and restore
SQL Server 2008 dump and MySQL 5
dump

2012 dump to SQL Script
with SQL Server
2012 types

migrate all SQL Server
2008 dump files to SQL
Server 2012 dump for-
mat

restore Oracle 10 dump and restore
SQL Server 2012 dump and MySQL 5
dump

Extrapolate this table for all supported database systems until 2060!!

The archive must always use the most recent version of the database and must offer migration
of older formats for a number of years after each version change.

The number of DBAs in the archive is roughly equal to the number of database systems sup-
ported.

A major migration to a different database system takes place, when a database is discontinued
(e.g. when Oracle discontinues MySQL).

3.3 Normalization

The normalization strategy for relational databases entails defining a “normal” digital storage
format that captures the essence of the data in a relational database independent of the data-
base vendor. We advocate using the SIARD format1 for this purpose. The data are stored in the
archive and are never changed. Only a single application for normalization and denormalization
needs to be kept up-to-date.

1http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en
http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0

January 15, 2013 Seite 6/18

http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0
http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en

Long-term Preservation of Relational Databases – What needs to be preserved how?

Year Submission Archive Dissemination

2008 submit SIARD file
conformant to
SIARD Format 1.0

store SIARD 1.0 file upload SIARD 1.0 file to database of
choice

2014(?) submit SIARD file
conformant to
SIARD Format 2.0

store SIARD 2.0 file upload SIARD 1.0 or SIARD 2.0 file to
database of choice

The various versions of SIARD Format coexist in the database. Each version is based on open
standards and is itself an open standard, which can be supported even in the year 2060.

The software for normalization (download from database) and denormalization (upload to data-
base) must be continuously kept up-to-date, but the archived material never needs to be
touched.

3.4 Why is Normalization preferable to Migration or Emulation?

Emulation appears to be unmanageable because the number of database administrators
(DBAs) as well as the number of client programs increases with every version of every data-
base system. No archive in the world can pay the salaries of so many database administrators.

Migration has proved to be somewhat unstable. Even minor upgrades from Oracle 10gR1 to
Oracle10gR2 database dump formats led to serious data loss. All migrated databases must be
checked for completeness after each migration. The amount of material to be migrated grows
with the amount of material archived. Lossless major migrations from one database system to
another are quite difficult. Finally, the number of database systems that need to be supported in
an archive is equal to the number of database systems used be the agencies submitting data-
bases.

Normalization has the advantage that nothing is migrated and therefore nothing is lost in migra-
tion. Also the archive only needs a single database system as a denormalization platform,
where the database content is made available to the users.

4 WHAT NEEDS TO BE ARCHIVED?

The mandate of most public archives on national, district or local level is to preserve the infor-
mation, not its form. This is lucky, because we do not believe, that present-day code will run on
any machine in 50-100 years from now. Thus we cannot preserve the presentation of and inter-
action with the data in a database except with a few screen shots and in the documentation of
the database application.

Relational databases were developed to enable a clear separation of data and code. Most gov-
ernment agencies use large relational databases which actually enforce such a separation.
Thus the only viable goal for long-term database preservation today is the archival of the data.

We want to increase the precision of this statement and turn it into a criterion of how to estab-
lish that we have preserved the complete relational database. First of all, a relational database
is a collection of tables. The data to be preserved reside in the cells of these tables. Tradition-
ally the cells of table could hold data of the types String, Number and Timestamp. So we have
preserved the database, if we have preserved the “primary” information of the content of each
cell of each table of the database, “meta” information about the table structure and the inter-ta-
ble referential structure.

Relational databases were never standardized on the bit level. Instead Edgar F. Codd insisted
on defining a query language, that would permit to access the data in a non-hierarchical fashion
without forcing the user into asking only a subset of the questions one might want to direct at a
structured data collection. This query language was based on mathematical logic (predicate
calculus), is called SQL today, and pretty much defines, what a relational database is.

January 15, 2013 Seite 7/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

Thus we refer to SQL:1999 as the standard that “defines”, what a relational database is1. We
refer to this particular standard although for our purposes it is largely equal to its predecessor
SQL-922, because it defines conformity to the standard in a more strict way and because it is
fairly recent. We have not updated to SQL:2003 because the only changes introduced by that
version concerned code (stored procedures), not data.

So if SQL defines what a database is,

the database is preserved completely, if the same SQL SELECT queries executed on the pre-
served database as on the original database yield the same results.

In the archival context we only are interested in querying the data, not in changing them. So we
do not insist, that all SQL statements have the same results but only the SQL SELECT state-
ment.

4.1 Criterion of Complete Preservation

Thus the requirement of complete preservation splits into a requirement for the meta data to
record the structure of each table, and a requirement for the primary data to record the content
of each cell of each table.

Criterion of Complete Preservation of Meta Data

For meta data this means, that the following is the minimum set of meta data that needs be pre-
served. On the database level, the meta data of all tables (more technically: of all “base tables”)
of the database must be preserved. On the table level, the meta data of all columns must be
preserved as well as all referential information linking the tables.

Table Meta Data

Name mandatory

Meta data for all columns mandatory

Primary Key optional but desirable

Candidate Keys optional but desirable

Foreign Keys optional but very desirable

Column Meta Data

Name mandatory

Type (SQL:1999 type) mandatory

The reason, why the key constraints are optional, is that their presence or absence does not
change the result of any SELECT query. On the other hand they document the intended data-

1Unfortunately most standardizing bodies make the user pay a high price for access to the original stan-
dards documents, which are usually worded in very formal legalese. But fortunately there are books avail-
able that explain the SQL:1999 standard in comprehensible language:

Jim Melton (Oracle Corporation), Alan R. Simon: SQL:1999 Understanding Relational Language Compo-
nents, Morgan Kaufmann Publishers, 2002

http://www.amazon.de/SQL-Understanding-Relational-Components-Management/dp/1558604561

Jim Melton (Oracle Corporation): Advanced SQL:1999, Understanding Object-Relational and Other Ad-
vaced Features, Morgan Kaufmann Publishers, 2003

http://www.amazon.de/Advanced-SQL-Understanding-Object-Relational-Management/dp/1558606777
2Even today the most excellent introduction into the SQL standard:

C. J. Date, Hugh Darwen: A Guide to the SQL Standard, Addison-Wesley, 1997

http://www.amazon.com/Guide-SQL-Standard-4th-Edition/dp/0201964260

January 15, 2013 Seite 8/18

http://www.amazon.com/Guide-SQL-Standard-4th-Edition/dp/0201964260
http://www.amazon.de/Advanced-SQL-Understanding-Object-Relational-Management/dp/1558606777
http://www.amazon.de/SQL-Understanding-Relational-Components-Management/dp/1558604561

Long-term Preservation of Relational Databases – What needs to be preserved how?

base structure, its tables and inter-table references. So they are a very useful addition for re-
searchers of the future.

There are many other SQL:1999 objects, which also do not change the result of any SQL:1999
query, but are useful information helping the interpretation of the meaning of the archived data,
like VIEWS, CHECK CONSTRAINTS, TRIGGERS and ROUTINES. Like the key constraints
they are of secondary importance to archived data, because they constrain and govern
changes of the database. But when a database is archived, we do not intend to change it in the
future. That is part of the definition of what it means to archive data. Unlike key constraints, all
of these objects can involve code. VIEWS are defined by queries often containing function calls
into code, CHECK CONSTRAINTS – like VIEWS – are expressed by queries that can contain
code and are meant to prevent changes that would make a database inconsistent. TRIGGERS
specify, which code to execute on changes. ROUTINES (stored procedures) are code. The
more code these objects are based on, the smaller are the chances, that they can be meaning-
fully interpreted in the future. But they certainly have informational value.

Finally there are some SQL:1999 objects for handling access control (USERS, ROLES,
GRANTS). In an archival situation we do not want any access restrictions to persist, but it is in-
formative to know about them.

Criterion of Complete Preservation of Primary Data

The most important question, however, when we want to archive a database, is the question of
whether we have preserved all primary data. Directed by the goal that any SELECT query
should yield the same result, whether executed on the original data or the preserved data, we
arrive at the following criterion for the completeness of the preserved data.

If we normalize the database in our archive format and denormalize it to the original system as
a restored database, then for each table TO with columns CO1, CO2, … CON of the original
database there must be a corresponding table TR with columns CR1, CR2, … CRN of the re-
stored database, such that the following three SQL queries result in the same number:

SELECT COUNT(*) FROM TO - - number of records of TO,
SELECT COUNT(*) FROM TR - - number of records of TR,
SELECT COUNT(*) FROM TO,TR
WHERE
 TO.CO1 = TR.CR1 AND
 TO.CO2 = TR.CR2 AND
 ...
 TO.CON = TR.CRN - - number of records from TO and TR with identical cell contents.

Thus the answer to the question of whether the cell content is faithfully preserved is based on
the meaning of the equal sign (=) in SQL (SQL:1999 to be precise). This shows, that the
preservation is complete, even if the types of columns CO1 and CR1 are not identical but com-
parable (e.g. CHAR(5) and VARCHAR(8)) and all (e.g. string) values are the same. This is of
considerable use, because today's concrete database systems have introduced a wild flurry of
types – many inconsistent with the SQL standard. This is largely a consequence of worries
about disk space of earlier times, where it made sense to distinguish longer and shorter strings
or numbers. In more modern standards, like the XML standard, this concern has disappeared
and all strings have one single type xs:string independent of their length.

The above simple version of the Criterion of Complete Preservation fails, when database tables
are allowed to have identical records (unfortunately permitted by the SQL:1999 standard, but
necessitating the absence of primary and candidate keys for the table), when some columns
are so-called large objects, or when the database contains complex data types like ARRAY or
user-defined data types (UDTs). Then we are forced to replace the criterion by more complex
expressions, but the basic idea remains the same.

Criterion of Complete Preservation – Repeated Records

If a table T with columns C1, C2, … CN can contain repeated records, the expression

January 15, 2013 Seite 9/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

SELECT C1, C2, … CN, COUNT(*) AS REPS FROM T GROUP BY C1, C2, … CN

results in a table with the same records, each record repeated only once, and with an additional
last field REPS indicating how many times the record was repeated in T.

Therefore one can replace TO and TR in the queries above by such SELECT expressions:

SELECT COUNT(*) FROM
 (SELECT CO1, CO2, ... CON, COUNT(*) AS REPS FROM TO GROUP BY CO1, CO2, ... CON) VO
- - number of distinct records of TO = number of records of VO
SELECT COUNT(*) FROM
 (SELECT CR1, CR2, ... CRN, COUNT(*) AS REPS FROM TR GROUP BY CR1, CR2, ... CRN) VR
- - number of distinct records of TR = number of records of VR
SELECT COUNT(*) FROM
 (SELECT CO1, CO2, ... CON, COUNT(*) AS REPS FROM TO GROUP BY CO1, CO2, ... CON) VO,
 (SELECT CR1, CR2, ... CRN, COUNT(*) AS REPS FROM TR GROUP BY CR1, CR2, ... CRN) VR
WHERE
 VO.CO1 = VR.CR1 AND
 VO.CO2 = VR.VR2 AND
 ...
 VO.CON = VR.CRN AND
 VO.REPS = VR.REPS
- - number of records of VO and VR with identical cell contents and identical number of
repetitions in TO and TR.

Criterion of Complete Preservation – Arrays and user-defined datatypes (UDTs)

The complex data types introduced by SQL:1999 are very similar to collections of columns.

So, for a column COA of array type of VO of length M with corresponding column CRA of VR,
replace the condition of cell equality above by

VO.COA(1) = VR.CRA(1) AND
VO.COA(2) = VR.CRA(2) AND
…
VO.COA(M) = VR.CRA(M)

Similarly for a user-defined datatype (UDT) column COU with members M1, M2, … MK of VO
with corresponding column CRU, replace the condition of cell equality above by

VO.COU.M1 = VR.CRU.M1 AND
VO.COU.M2 = VR.CRU.M2 AND
...
VO.COU.MK = VR.CRU.MK

Criterion of Complete Preservation – Large Objects

Even in 1999 there was some concern about storage capacity still around. Therefore the SQL
standard does not permit an equality condition on large objects (large character strings CLOBs
or large binary strings BLOBs). So, in order to extend and apply the Criterion of Complete
Preservation to this case, one must implement two FUNCTIONs clob_equal and blob_equal,
which return TRUE, if two large objects are equal, and FALSE if they are not. With the help of
these functions, the condition of cell equality for a column COB of type BLOB must be replaced
by

blob_equal(VO.COB, VR.CRB)

and the condition of cell equality for a column COC of type CLOB must be replaced by

clob_equal(VO.COC, VR.CRC)

January 15, 2013 Seite 10/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

Thus, although the details are somewhat convoluted, it is very easy, in principle, to determine
whether all primary data have been preserved completely. The two criteria of complete preser-
vation answer the question of what the “characteristic attributes” of a database are. They are
the basis of every quality control of the preservation activity.

5 SIARD FORMAT REQUIREMENTS

The normalization format for relational databases was called SIARD for “Software-Independent
Archiving of Relational Databases”. A prototype1 was developed by S. Heuscher, S. Jaermann,
P. Keller-Marxer and F. Moehle as part of the ARELDA (ARchival of ELectronically stored DAta)
project of the Swiss Federal Archives in the years 2002-2005. The current version of SIARD
Format and SIARD Suite2 were developed by H. Thomas from Enter AG for the Swiss Federal
Archives in the years 2007-2008. Their use is offered free of charge to any interested party by
the Swiss Federal Archives. It has since been expanded and maintained by Enter AG for the
Swiss Federal Archives. In 2013 it was homologized as E-Government Standard eCH-001653.

The decision that a normalization format was needed for relational databases ,and the concept
of what needs to be preserved presented above, led to the following requirements for the new
normalization format to be defined.

5.1 The SIARD format must store a complete database in a single file.

Experience has shown that approaches to database archival that store the tables individually,
experience a lot of problems with referential integrity. Storing the whole database in a folder
structure with individual files, resulted in problems with the authenticity of the stored data, be-
cause archive employees are wont to “correct” errors in the primary data. It is also very desir-
able to be able to transmit or copy a database from one place to the other “as a whole”.

5.2 The SIARD format must treat all data accessible to an archival user using SQL as a
complete database.

Obviously a normalization program cannot access any data that are not accessible to the data-
base user employed for archival. So a complete SIARD file cannot store more than what is ac-
cessible to the archival user. Many applications access more than one database schema. So
from the perspective of the application, everything accessible to it is a unit. It is desirable to be
able to store the whole unit as a database. This is possible, if the archival user has access to
the same data as the database application. Therefore a complete SIARD file should not store
less, than what is accessible to the archival user.

By creating an archival user and assigning a judiciously selected number of privileges to it, the
scope of the archived database can be fine-tuned at the moment of normalization.

5.3 The SIARD format must be based on open standards.

As mentioned above, this requirement must be fulfilled by any storage format for long-term
preservation. In a niche situation like the archival of databases, the format will not be preserved
because of the sheer number of datasets stored in this format, like e.g. the CD-Audio format.
Thus it is even more imperative that the standard be open and freely accessible for all con-
cerned parties.

5.4 The SIARD format must store all primary data completely.

What complete storage of primary data means has been defined above. Any SELECT query on
the archived table data must yield the same result as on the tables of the original database.

5.5 The SIARD format must contain technical meta data about all tables and columns.

The meta data must permit identifying the archived tables and columns and their types.

1http://arxiv.org/abs/cs/0408054
2http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en
3http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0

January 15, 2013 Seite 11/18

http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0
http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en
http://arxiv.org/abs/cs/0408054

Long-term Preservation of Relational Databases – What needs to be preserved how?

5.6 The SIARD format should contain all meta data about database keys.

The database keys (primary keys, candidate keys, foreign keys) are not absolutely required in
the archive. The Criterion of Complete Preservation can be fulfilled without any keys. No result
of a SELECT query is changed by the absence of a key. Keys are constraints to keep a data-
base from changing to an inconsistent state. Archived databases, however, are never changed.
Nevertheless, information about database keys greatly helps interpretation and understanding
of the database structure. So they should be preserved whenever they are available.

5.7 The SIARD format may contain meta data about all other SQL:1999 objects.

The SQL:1999 standard defines what a database is. For archival purposes it is very similar to
SQL-92 but requires more strict compliance. The more recent standard SQL:2003 has added
requirements for stored procedures (code), which are of lesser significance for archival pur-
poses. It is imaginable, that new versions of the SIARD format will be needed when the SQL
standard changes significantly.

5.8 The SIARD format must not contain any information specific to an institution.

When confronted with the SIARD format, many archivists confuse the SIARD format with the
format of an archive-specific Archival Information Package (AIP) according to the OAIS1 stan-
dard. Thus they would like to add the meta data referring to the tectonics of their institution to
the SIARD file. But a SIARD file is much more similar to an MS Word file, which is contained in
an AIP, together with additional context information of the archive. It should be possible to
transmit and integrate the same database file in different archival institutions.

5.9 The SIARD format should enable integrity control of the primary data.

Whereas an archive may have a need to add explanatory meta data to a SIARD file, its primary
data, which guarantee the completeness (see the Criterion of Complete Preservation above),
must never be changed. A file format in itself cannot control its own integrity. But it can simplify
integrity control by computing a digest (check sum) over the primary data, which can be stored
in a catalog and compared to a computation of the digest on the primary data at a later time.

6 SIARD FILE STRUCTURE

Similar to many other modern file formats (MS Office Open XML, Open Document Format) a
SIARD file is a ZIP file containing XML files and – possibly – some text and binary files repre-
senting large objects. Due to the fact, that databases often are larger than 4 GB, the 64-bit ex-
tension of the ZIP standard is used. The ZIP file is only used as a container and stores the con-
tent uncompressed – leaving the compression concern to lower-level hardware drivers. All XML
files store their data as UTF-8 characters. Thus the SIARD file structure is based on these in-
ternational standards:

– ZIP (64-bit Version > 4.5) for the container,

– SQL:1999 for the structure,

– XML for the data,

– UTF-8 for the characters.

The complete definition of the SIARD format can be found elsewhere2. Here we only give a
brief overview as a basis for the following discussion.

6.1 Folders header and content

A SIARD file consists of two folders header and content on the highest level.

The header folder contains the file metadata.xml, which describes the complete database by
listing all database objects in SQL:1999 compliant format that could be retrieved.

1http://en.wikipedia.org/wiki/Open_Archival_Information_System
2http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en

http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0

January 15, 2013 Seite 12/18

http://www.ech.ch/vechweb/page?p=dossier&documentNumber=eCH-0165&documentVersion=1.0
http://www.bar.admin.ch/dienstleistungen/00823/00825/index.html?lang=en
http://en.wikipedia.org/wiki/Open_Archival_Information_System

Long-term Preservation of Relational Databases – What needs to be preserved how?

The content folder contains a folder for each database schema archived. All folder and file
names in the SIARD file are short and restricted ASCII ('0'-'9','A'-'Z','a'-'z') for maximum com-
patibility with any operating system. So the schema folder names are usually schema0,
schema1, schema2, … The map from the real schema name in the database to the folder
name is established in the metadata.xml.

6.2 Schema Folders

Each schema folder contains a table folder (table0, table1, table2, ...) for each table in that
database schema.

6.3 Table Folders

Each table folder contains an XML Schema Definition for the table data, an XML file represent-
ing the table data, and – possibly – folders (lob0, lob1, lob2, ...) for each large object column.

The XML Schema Definition maps the SQL types to XML types. The table XML file holds the
actual primary data with a row tag for each column and a column tag (c1, c2, c3, …) for each
column. The row and column tags have been chosen as short as possible. The size of a SIARD
file should be dominated by the primary data content and not by the tags.

6.4 Large Object Folders

The large object folders contain a file for each large object of that column with a length larger
than some minimum length. Every large object value is either “in-lined” in the table XML like any
non-large value or referenced as a file in the corresponding LOB folder.

The reason for this somewhat arbitrary “in-lining” is the experience, that many LOBs are NULL
or very short and that very many small LOB files in the LOB folder are difficult to handle on
some operating systems.

6.5 Integrity of the Data, Formerly Called Authenticity

The SIARD format permits storing a message digest (check sum) over the contents of the con-
tent folder in the metadata.xml. By recalculating this digest and comparing it with the one stored
in the meta data at the moment of creation of the SIARD file, one can detect if the primary data
have been tampered with after the download. Metadata are not part of this integrity check be-
cause archives must have the possibility to enhance them any time.

Of course it is easy to change the primary data, recompute the message digest and store the
changed message digest in the metadata.xml. The SIARD format does not pretend to establish
a cryptographic barrier against fraud. However, if the check sum proves integrity at the moment
of ingest, then it can be stored in a separate database (e.g. a database acting as the “Data
Management” unit of the OAIS1) of the institution and can be used at the moment of access for
proving the integrity of the primary data.

6.6 Validity

A SIARD file is valid, if it conforms to the standards mentioned above:

1. It must be a valid ZIP 64 file.

2. The XML files must conform to the respective XSDs and all be coded in UTF-8.

3. The metadata.xml and the table<n>.xsd files must describe a database structure that
conforms to SQL:1999. Specifically all constraints (column types, database keys) men-
tioned in the meta data must be met by the data.

Unfortunately the last requirement is forgotten by some validation systems that focus too nar-
rowly on XSD conformance.

The ZIP conformance can be checked individually by unzipping it with PKZIP2 or Zip64File3.

1http://en.wikipedia.org/wiki/Open_Archival_Information_System
2http://www.pkware.com/software/pkzip/
3http://sourceforge.net/projects/zip64file

January 15, 2013 Seite 13/18

http://sourceforge.net/projects/zip64file
http://www.pkware.com/software/pkzip/
http://en.wikipedia.org/wiki/Open_Archival_Information_System

Long-term Preservation of Relational Databases – What needs to be preserved how?

The XSD compliance can be checked with any XML tool, utilizing the metadata.xsd of the
SIARD format definition.

The SQL conformance can be checked by attempting to upload the SIARD file to a database
system which is reasonably conformant to the SQL:1999 standard (e.g. SQL Server).

A very robust practical validation is achieved by opening the SIARD file using SIARD Suite,
which checks ZIP conformance and XSD conformance of all XSDs, and test-uploading it to a
dissemination database of the archive (e.g. a SQL Server instance) which checks conformance
to SQL constraints.

6.7 The Problem of Binary Large Objects

Binary objects – whether they are large objects or not – present a special problem. They may
contain anything (possibly code) and thus not be suitable for archival. If they are unimportant,
storing some bits that cannot be understood on dissemination, may not hurt much. If the whole
database consists of binary objects, it is probably an object-oriented database and therefore not
suitable for long-term preservation, because code and data are inextricably mixed in proprietary
formats.

Depending on the rules of acceptable archive formats of an institution, one may want to restrict
Binary Large Objects (BLOBs) to formats (e.g. image file formats) accepted for archival by the
institution.

The same problem must be faced, when archiving documents (PDF, DOCX, ODT, …) which
may contain binary image files.

7 THE MAPPING OF SQL TO XML

The file format described thus far, makes the assumption, that every SQL type can be mapped
to an XML type in a valid manner. As real database systems support a very wide – often non-
standard – variety of database types and we should like to be able to archive any relational
database that is presented to the archive, we must show that no information is lost in the trans-
formation. We will discuss this for the most typical database types using the Criterion of Com-
plete Preservation derived above.

When databases were standardized, limitation of maximum storage space of a cell was a major
concern, because variable length data could not be handled easily and thus every cell used the
maximum amount of storage allocated to the column. This led to the proliferation of database
types. When XML was standardized these concerns had vanished. It was clear that data be-
tween tags were allowed to take any amount of space. Thus many different SQL types can be
mapped to few XML types without loss of information.

7.1 Correctness of Character String Preservation

All character string types (except large objects) can be checked for equality with “=” in an SQL
query. Cell content 'Hello' in a column of type CHAR(5) is equal to cell content 'Hello' in a col-
umn of CHARACTER VARYING(255). Therefore the database is preserved correctly even if
types are not identical, as long as the values are identical. Thus the XML type xs:string can be
used for storing any character-string database type.

7.2 Correctness of Preservation of Dates and Times

All date and time database types can be compared using SQL equality. '01-21-2013' as DATE
is equal to '01-21-2013 00:00:00.000000' as TIMESTAMP(6). So these values are preserved
correctly even if their types differ as long as their values are the same.

We use xs:date, xs:time and xs:dateTime for storing all dates and times in a database.

Although XML permits storing these values with a time zone and a day-light savings offset,
SIARD Suite stores all times in UTC (Universal Time closely corresponding to Greenwich Mean
Time GMT). At the moment of downloading SIARD Suite maps local time to universal time. On
uploading it maps universal time to local time. It is possible to prevent these conversions using
a command-line switch setting the time zone to UTC. Otherwise the local time zone is retrieved
from the system in which the SIARD Suite runs.

January 15, 2013 Seite 14/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

7.3 Correctness of Integer Preservation

All integer types can be checked for equality using SQL. 4 as SMALLINT equals 4 as INT.
Therefore we can use xs:integer to store any integer type.

7.4 Correctness of Preservation of Decimal Types

All decimal types can be checked for equality using SQL. 0.5 as DECIMAL(1) equals 0.5 as
DECIMAL(5). Therefore we can use xs:decimal to store any decimal type.

7.5 Correctness of Preservation of Floating Point Types

Although comparing floating point numbers in numerical applications is dangerous because of
rounding errors, it is permitted for database archival because no arithmetical operations are
performed. The 4-byte and 8-byte floating point numbers are ISO standards which are the basis
of the database as well as the XML types. Conversion of the binary ISO format to the decimal
XML format may introduce a rounding error but preserves equality as well as weak ordering. All
floating point types can be checked for equality in SQL. 0.3 as FLOAT(3) equals 0.3 as
REAL(5). Therefore they can all be stored either as xs:float (4 byte ISO floating point) or
xs:double (8 byte ISO floating point) with limited loss of precision due to rounding.

7.6 Correctness and Preservation of Identifiers

Real-life database systems make different rules concerning which identifiers are valid. Most of
them support only a subset of the permissible identifiers in SQL:1999. Some database systems
exclude identifiers that are longer than 14 characters. Most database systems have different
sets of reserved keywords and forbid identifiers that are equal to one of them. Some database
system have different scope rules than SQL and thus prohibit using the same name of an SQL
object in a different schema.

SIARD Suite always stores the identifier name found in the original system in the SIARD file.

However, it might encounter difficulties on uploading a SIARD file to a different system due to
the difficulties mentioned above. Therefore a disambiguation mechanism is used for creating
valid identifiers in the target system. A forbidden column name VALUE might be replaced by
VALUE0 in a system, where VALUE is a reserved keyword. All identifiers longer than 14 char-
acters may be shortened to 14 characters in a system which limits identifier length. If the trun-
cation process maps two different identifiers to the same value IDENTIFIER, then SIARD Suite
will use IDENTIFIER1 for one of them and IDENTIFIER2 for the other when uploading the data-
base.

In spite of this difference between the original and the restored database the Criterion of Com-
plete Preservation is still fulfilled, because the values of the primary data do not depend on the
names of tables or columns. All SELECT queries still yield the same result, as long as it is
known, which identifiers in the SIARD file were replaced by which disambiguated names.

8 SQL OBJECTS OTHER THAN TABLES

In a SIARD file only cell values of so-called base tables are considered to be primary data. All
other objects are only described in the meta data.

8.1 Keys

As already mentioned before, the primary keys, candidate keys and foreign keys of a database
should be documented in the meta data. They only refer to schemas, tables and columns and
thus only describe the primary data more closely. Although, strictly speaking, their absence will
not change the outcome of any SELECT query, they are a great help for understanding the
database structure. Also their presence permits more close control of the consistency of the
database. Thus, downloading a live database where records are entered or deleted between
the lengthy archival of two tables might introduce relational inconsistencies, which would be de-
tected with the help of keys. (For this reason only snap shots of a database should be archived,
that do not change during archival.) If it is desired that they should be excluded when SIARD
Suite is used for archiving, one will have to drop all constraints before downloading the data-
base.

January 15, 2013 Seite 15/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

Whenever possible, SIARD Suite attempts to enable the key constraints in databases uploaded
onto a dissemination server. This may fail because some databases only permit primary keys
as target for foreign key references, whereas others also allow candidate keys. Even if the con-
straints cannot be all enabled on upload, the database can be queried without data loss. There-
fore in this case the upload is successful, although accompanied by some warnings.

8.2 Views

Views are SELECT queries, that are stored under a name. Unfortunately they may contain
code (function calls). Real-life database systems also support many non-standard SQL con-
structs, which may appear here. Therefore it is improbable, that the same query can be exe-
cuted on a different database system, than that upon which the database is uploaded.

The text of the query may nevertheless be of interest and help understanding the use of the
database, as the SQL dialects at least resemble each other a lot. Therefore it is useful if views
are documented in the meta data. Unfortunately many database systems do not enable access
to the query text. SIARD Suite stores the query text if it can find it. Otherwise it at least stores
the name and the column names and types of the query result and lets the user add the query
text manually. On upload to a dissemination database, views stored in the SIARD file are not
created because of the differences in SQL dialects, which make a general upload almost im-
possible. The user of the dissemination database will have to create them manually based on
the information in the SIARD file if they are important.

8.3 Constraints and Triggers

Check constraints are similar to the WHERE condition of a SELECT query. They can contain
code (function calls) and are often formulated in an SQL dialect which does not conform to the
SQL standard. They are used rarely and some database systems even do not support them. As
with all constraints their value is only informational. Archived databases do not change. Con-
straints serve to prevent inconsistent changes of a database. So no primary data are lost when
they are not preserved.

In the SIARD Format a meta data object is defined for check constraints, which are objects
specified in the SQL:1999 standard.

SIARD Suite displays the check constraint data, when they are present in the SIARD file, but
does not create them on download or upload them.

A trigger is code that is executed when a certain database change occurs. Again this is immate-
rial for archived databases because no change ever occurs. Also the code is most likely not ex-
ecutable on the dissemination system. Therefore a trigger only serves an informational pur-
pose.

In the SIARD Format a meta data object is defined for triggers, which are objects specified in
the SQL:1999 standard.

SIARD Suite displays the trigger, when they are present in the SIARD file, but does not create
them on download or upload them.

8.4 Routines

Routine is the word used in the SQL:1999 standard for stored procedures. These are all code
and thus certainly cannot be objects of long-term preservation. Also in real-life databases they
come in all kinds of programming languages (PL/SQL, JAVA, Visual Basic).

SIARD Suite usually stores at least the signature (routine name and parameter types and
names). For some database systems, the body of the routine can be stored too. In all other
cases, it is possible to enhance the routine meta data by copying the body manually.

Routines are a very minor concern in the context of long-term database preservation. They are
not uploaded to a dissemination database by SIARD Suite.

8.5 Permissions

SQL:1999 objects like users, roles, privileges also carry some information about how the data-
base was used. They can be documented in the SIARD file. They constrain access and

January 15, 2013 Seite 16/18

Long-term Preservation of Relational Databases – What needs to be preserved how?

changes to parts of a database for some users. They must never be enabled on upload to a
dissemination system, because an archive almost certainly will need to apply a different kind of
access control to its data.

8.6 Applications

Database applications are not part of the SQL:1999 standard. However, almost all databases
are accessed by their users through the user interface of an application. For example MS Ac-
cess files contain Forms, Reports and Visual Basic code, which present database table data to
the user and extract some specialized reports from them. As mentioned in the chapter Code
and Data, they are not suited for long-term preservation.

What can be preserved, however, are some sample screen shots (image files) and sample re-
ports (document files), that document, how people accessed the table data. It is very useful, to
store such documents together with a manual and a data dictionary along with the database in
an Archive Information Package to help future researchers understand the meaning of the data.

9 SIARD FORMAT AND SIARD SUITE

For an archive, the all-important question is the choice of the normalized archive format. As
soon as documents in this format accumulate in the archive, it becomes very difficult for the ar-
chive to extract itself from that commitment. In the case of long-term preservation of databases
we consider the choice of the SIARD format reasonable. No other archival format of databases
is an open, durable standard, which has been developed with the normalization strategy as a
basis. It is to be hoped that many archives adopt this format and thus join the community in
which databases in this format can be exchanged.

The archives must commit to a common format because they are a niche market. No single ar-
chive can afford to define and maintain their own standard. Only through wide adoption of a
common format is the exchangeability of data between archives guaranteed

If all archives start defining their own derivation of the SIARD format – with different sets of
meta data for example – then again database documents cannot be exchanged between ar-
chives. The users of the SIARD format must agree to stick to the relatively few versions devel-
oped by the standard committee (currently: Swiss Federal Archives and the Swiss E-Govern-
ment Standards association eCH1, but a more international standardization process could and
should be adopted). Requests for features of future standard can be submitted to the commit-
tee and must be approved by it.

In other types of business, the vendor lock-in is usually through the software. In the case of ar-
chives with a normalization strategy, the software is secondary. SIARD Suite is a “reference im-
plementation” which is used in real-life archiving solutions. This software for normalizing and
denormalizing is very versatile, supports many database systems and does not depend on the
operating system. However, for special purposes (e.g. direct conversion of some dump format
to a SIARD file with high performance) other programs can make use of the format. The only
condition is that they conform to the format.

Whereas SIARD files are never migrated in the archive, SIARD Suite as a program performing
the normalization and denormalization of real-life database systems must be maintained and
upgraded with the arrival of new versions of database systems and operating environments.

9.1 Guiding Principle for SIARD Suite: All Databases can be Archived

The goal of an archive is to document real government activity, not to censor the data it re-
ceives. Of course, it is desirable that government agencies proceed in an orderly fashion. But if
politics fail to enforce it, the archive is usually not in a position to remedy that at the time when
the documents are to be archived.

So on the one hand, an archive must attempt to limit the data formats it accepts as narrowly as
possible. This goal is well served by normalization. On the other hand, it must be able to include
all data – or at least the large majority – that are handed to it. This goal can only be achieved, if
the normalization process attempts to archive any document of the given type.

1http://www.ech.ch/vechweb/page

January 15, 2013 Seite 17/18

http://www.ech.ch/vechweb/page

Long-term Preservation of Relational Databases – What needs to be preserved how?

Therefore SIARD Suite attempts to normalize any database into the SIARD format, if the data
are available in one of the database types it supports1. This may result in some migration trans-
formation for databases that do not conform to the SQL standard very well. E.g. MySQL data-
bases on LINUX will have their identifiers stored in lower-case and thus queries, that worked in
the original database, may fail, if they do not quote the identifiers. MS Access databases store
the query of a view in a very rudimentary format, which is combined into something like an SQL
query by SIARD Suite. ...

10 HOW TO ACHIEVE PRESERVATION

Long-term preservation has succeeded when the data can be disseminated to users in 50-100
years and be understood by them. The SIARD format makes sure that the data in the cells can
be understood technically. It is of no help, however, when their meaning must be understood.
Imagine a historian studying a database of a large bank in 50 years from now. If she does not
realize, that a certain innocent-looking column called I with values 0 or 1 means “invalid trans-
action” or “deleted entry”, then she will be confronted with a very misleading picture of the cur-
rent financial crisis.

So the agencies downloading databases for archival must accompany the data with as much
documentation of their meaning as possible. That is the reason why every meta data object in
the SIARD format has a field called description, where information about its meaning can and
should be entered. SIARD Suite downloads database table and column comments from the
original database and stores them in this field whenever possible.

Large databases often have several hundreds of tables with hundreds of columns each. So
documenting the meaning of each column requires a sizeable effort. Fortunately many serious
developers of database applications have documented the meaning of each field in a so-called
data dictionary. Often this documentation can even be uploaded as table or column comments
to the database before archival.

SIARD Suite helps handling this explanatory effort by permitting the merger of the field descrip-
tion of a previous download with a new download. So, if a database only changed a little, most
of the explanation needs not be repeated.

SIARD Suite does not force the user to add a description to every column of every table before
archival is possible. For many small databases (MS Access) the effort is not worth it. Also it
makes no sense whatsoever to insist on a comment that the CITY table is a table listing cities
and the COUNTRY table holds country names. Finally, the database may be described very
well in accompanying manual and data dictionaries; it makes more sense, to refer to them,
rather than enter text in 10'000 description fields.

When the download of a database using SIARD Suite has succeeded and the data are stored
in SIARD format, the technical part of archival is over. The archivists work, however, has just
started. It consists of ensuring the preservation of meaning.

Zürich, den 15. January 2013 Dr. sc. math. Hartwig Thomas

1at the time of writing: MS Access, Oracle, SQL Server, and MySQL

January 15, 2013 Seite 18/18

	Long-term Preservation of Relational Databases
	1 Introduction
	2 The Problem of Long-Term Preservation
	2.1 Code and Data
	2.2 Relational Databases

	3 Emulation – Migration – Normalization
	3.1 Emulation
	3.2 Migration
	3.3 Normalization
	3.4 Why is Normalization preferable to Migration or Emulation?

	4 What needs to be Archived?
	4.1 Criterion of Complete Preservation

	5 SIARD Format Requirements
	5.1 The SIARD format must store a complete database in a single file.
	5.2 The SIARD format must treat all data accessible to an archival user using SQL as a complete database.
	5.3 The SIARD format must be based on open standards.
	5.4 The SIARD format must store all primary data completely.
	5.5 The SIARD format must contain technical meta data about all tables and columns.
	5.6 The SIARD format should contain all meta data about database keys.
	5.7 The SIARD format may contain meta data about all other SQL:1999 objects.
	5.8 The SIARD format must not contain any information specific to an institution.
	5.9 The SIARD format should enable integrity control of the primary data.

	6 SIARD File Structure
	6.1 Folders header and content
	6.2 Schema Folders
	6.3 Table Folders
	6.4 Large Object Folders
	6.5 Integrity of the Data, Formerly Called Authenticity
	6.6 Validity
	6.7 The Problem of Binary Large Objects

	7 The Mapping of SQL to XML
	7.1 Correctness of Character String Preservation
	7.2 Correctness of Preservation of Dates and Times
	7.3 Correctness of Integer Preservation
	7.4 Correctness of Preservation of Decimal Types
	7.5 Correctness of Preservation of Floating Point Types
	7.6 Correctness and Preservation of Identifiers

	8 SQL Objects Other Than Tables
	8.1 Keys
	8.2 Views
	8.3 Constraints and Triggers
	8.4 Routines
	8.5 Permissions
	8.6 Applications

	9 SIARD Format and SIARD Suite
	9.1 Guiding Principle for SIARD Suite: All Databases can be Archived

	10 How to Achieve Preservation

