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The object of this paper is to show that Ising models can be completely characterized
by the probabilistic Markov property and to derive some conclusions from this relation-
ship.

The study of the Ising model continues to be a chal-
lenge for theoretical physicists and mathematicians.
Although the concept of the Ising model is easily stat-
ed and understood, it turns out to be quite difficult
to derive its properties or to generate it on a com-
puter.

As a very simple model that exhibits phase transi-
tions, it is of interest in solid state physics. As a proba-
bility-theoretical model for multidimensional arrays
of random variables that are not independent but lo-
cally coupled, it may prove to be of interest in many
other areas, e.g. image processing, sociology etc.).

The following is a mathematical discussion of the
concept of the Ising model. A purely probabilistic
characterization of the Ising model is presented which
is independent of specific values of the random vari-
ables or of the details of their topological arrangement
as well as of specific formulas for their joint probabili-
ty. The proof is discussed and leads to interesting
variants for the definition of the interaction potential
(e.g. such that the partition function becomes the en-
tropy of the system).

In the following we consider only regular finite fami-
lies of random variables ((t)tET with a finite set of
values St at each point tE T. Such a family is deter-
mined by the probability P((Xt)tET)=Pr((t=xtIVtET)
for every configuration (Xt)tET in the cartesian product
of the St. We call 'lfA = n St the set of configurations

tEA

on the subset A e T. From now on ~A will be used
for ((t)tEA, XA for (Xt)tEA, etc. If P(xT»O for all xTE'lfT
then we call (T regular. Of course, the probability
is normed: I P(xT)=1. For sets A,BETwith An

B=0 we call ~A independent of ~B if ~uB(XAoXB)
= PA (xA)· PB(XB), where XA °XB denotes the configura-
tion on Au B which is composed of XA on A and
XB on Band PA(XA)= I P(XAoYT\A) is the mar-

YT\Ae<CT\A

ginal probability distribution of ~A. Similarly we call
~A (conditionally) independent of ~B given ~c if
PA uBudxA °XB Ixd = PA udxA Ixd· PBudxB Ixd, where
PAuB(XAlxB)=PAuB(XAoXB)/PB(XB)· Thus ~A is condi-
tionally independent of ~B given ~c if and only if

Ps(XA °xBoxd· Ps(YA oYBoxd

= Ps(YA °xBoxd· Ps(xA °YBoxd

for all XA, XB, Xc, YA, YB, where S =A u Bu C.
We proceed to endow the index set Twith a topol-

ogy. We call At e Tx T a neighborhood relation, if
At is symmetric and reflexive. Given a neighborhood
relation we call a subset SeT a simplex if it is not
empty and any two S, tES are neighbors. Let Y' e
Y'(T) be the set of all simplices. For any SeT the
set aS consisting of all tE T\S which are neighbors
of some SES is called the boundary of S.

We call ~T a (At-)Markov net if for every SeT ~s
is conditionally independent of ~T\(SuiJS) given ~iJs.



P(Xso X, °ZT\{s, I))' P(ZT) = P(Xso ZT\{S))' P(X, °ZT\(t))

'r/XsES" 'r/X,ES, (2)

holds for Markov nets, if sand t are not neighbors.
We call ~T a (JV-)Ising model if

where the sum is over all simplices and Xs is assumed
to be the restriction of XT to S. Z is a normalization
factor that ensures that P(xT) is normed. It is called
the partition function. Obviously ~T' when defined
in this manner, is regular.

It is clear how these definitions lead to a markov
chain if the neighborhood relation JV is chosen as
a one-dimensional open-ended chain. Similarly T can
be made into an n-dimensional torus as is usual in
the Ising model of physics.

Lemma. For two real functions H and I of the subsets
SE£1J'(T) of the power set of T

H(S)= L I(S') 'r/ScT
S'eS

I(S)= L (_I)IS\S'IH(S') 'r/ScT
S'eS

are equivalent. This is also called the inclusion exclu-
sion principle.

The proof of the Lemma is based on the fact that
the number of sets Sf of cardinality k which are subsets
of Sand supersets of S" is given by the binomial

(
IS\S"I)coefficient k -IS"I and therefore for fixed Sand S"

L (_1)IS'\S"1 = I (ISf\S::I) (_1)k -IS"I
S"cS'cS k=IS"1 k-IS I

IS\S"I(IS\S"I)
= k~O k (_I)k =b(S", S).

L L (- 1)IS'\S"IH (S")
S'eS S"eS'

= L H(S")· L (-I)IS'\S"I=H(S)
S"eS S"eS'eS

L L (-I)IS\S'II(S")
S'eS S"eS'

= L (-I)IS\S"II(S")· L (-I)-IS'\S"I=I(S).
S"eS S"eS'eS

Obviously the relations H (S) = L I (Sf) form a
S'eS

non-singular system of equations, even when we con-
sider sublattices of the lattice of all subsets. The coeffi-
cients for the inverse expression for the I (S) will de-
pend, however, on the particular sublattice.

Theorem: The class of JV-Markov nets is identical
with the class of JV -I sing models.

In the proof we slightly generalize the reasoning
of Sherman. We choose an arbitrary but fixed config-
uration ZTE((;T' For each S c Twe define

Each Hs is thus a function of the configurations on
S. Using Mobius inversion we define interaction po-
tentials

Is(xs)= L (-I)IS\S'IHs'(xs.).
S'eS

P(xT)=exp( L IS (xs))·
SE9'(T)

If we set I(/)= -log(Z) and all Is=- 0 except for S EY u
{0}, then P describes an Ising model.

It is obvious that every Ising model has the Mar-
kov property. To show the converse we examine the
interaction potential of a set S¢:Yu {0}. There exist
s, tES which are not neighbors. Because of (2) we have

Is(xs)= L (-I)IS\S'IHs'(xs')
S'eS

L (_I)IS\S'1 {Hs'v{s")(xs'v{S,,j)- Hs'v(s)(xs'v(s))
S'eS\{S,I)

In the proof of the above theorem we have defined
the Hs(xs)=Hs(xs, ZT) using an arbitrary but fixed



configuration ZT on T\S. H0=I0, the negative loga-
rithm of the partition function, becomes just
10g(P(zT))' Obviously any other ZT could have been
used as well as a linear combination

Hs(xs)= L AZTHs(xS,ZT),
ZTE«fT

The following choices of )'ZT appear to be of inter-
est:
1) )'zT=P(ZT): with this choice the partition function
becomes

2) A
ZT

= 1/I"tTI. This yields the traditional Ising inter-
action potentials if the state set S, = {-1, I} at each
point tE T We then have

1
-log(Z)=_· L 10g(P(zT))'

I"tT I ZTE'CT

i.e. the partition function is the inverse of the geomet-
rical mean of the probabilities of all configurations.

In the case of the open-ended one-dimensional
Markov chain, we can choose the Is(xs) as functions
of the marginal probabilities Ps(xs). This greatly facili-
tates calculation and simulation of such random
"nets".

In a different context R.F. Hauser has proposed
to study the resulting" interaction potentials", with
Hs(xs)= 10g(Ps(xs))· Following the argument of the

proof of the main theorem, it can be seen, that the
interaction potentials Is have to be defined in a differ-
ent manner in order to achieve Is= 0 if S is not a
simplex. For Markov chains this can be achieved if
one plugs the lattice of connected subsets into the
Mobius inversion theorem. This yields the inversion
formula

IU....• i+k} =Hu, .... i+k} - Hu ..... i+k- J} -H{i+ J •..• i+k}

+H(i+ 1....•iH- J}'

This is easily seen to be zero for k> 1.
For cyclic Markov chains or two-dimensional

Markov nets an expression for the total probability
as a function of the simplex probabilities is not to
be expected, as the simplex probabilities are not likely
to be independent.
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