
Smoothsort commented transcription EWD796a

Smoothsort, an alternative for sorting in situ
by Edsger W. Dijkstra

Burroughs Corporation

transcribed and commented by Hartwig Thomas
Enter AG

[Comments by the transcriber will be in square brackets. The transcription serves two purposes. By
being published on the web this beautiful little algorithm is rendered accessible for search programs.
The attention focussed on it will enable the transcriber to implement it. H.T.]

Abstract.
Like heapsort – which inspired it – smoothsort is an algorithm for sorting in situ. It is of order

N⋅log N in the worst case, but of order N in the best case, with a smooth transition between
the two. (Hence its name.)

Key Words and Phrases: sorting in situ, heapsort, sorting trees, sift, computational complexity.

CR Categories: 5.25, 5.31

[Whatever those are.]

Author's present address:

Edsger W. Dijkstra, Burroughs, Plataanstraat 5, 5671 AL Nuenen, the Netherlands

Edsger W. Dijkstra Hartwig Thomas 1/11

Smoothsort commented transcription EWD796a

Smoothsort, an alternative for sorting in situ
by Esger W. Dijkstra

Introduction
Heapsort [0] [1] is an efficient algorithm for sorting mi :0≤iN in situ; some, however,

consider it a disadvantage of heapsort that it absolutely fails to exploit the circumstances in which
the sequence is initially nearly sorted. While sharing in general with heapsort its N⋅log N
characteristic, smoothsort does not share this disadvantage: for an initially (nearly) sorted sequence,
smoothsort is of order N with a smooth transition between the two. Smoothsort can be viewed as
a pure exchange sort that is of order N⋅log N in the worst case. For brevity's sake we shall
describe sorting the integer sequence mi :0≤iN in ascending order.

General outline of smoothsort
After a preparation in its first phase, smoothsort builds up the sorted sequence from right to left,

i.e. it maintains between q and m

P0: ∀ i , j : 0≤i j∧q≤ jN : mi≤m j∧1≤q≤N

which is vacuously true for q=N and enjoys the useful property that P0∧q=1 implies that the
sequence m is in ascending order. (Since smoothsort modifies m only by swapping two of its
elements, m obiously remains a permutation of the same bag of values.)

The second relation built up during smoothsort's first phase and maintained during its second
phase, is

P1: the unsorted prefix mi ,0≤iq is the postorder [children first] traversal of a tree in which no
son exceeds its father.

Relation P1 ensures that the rightmost element of the unsorted prefix is its maximum element
and that, therefore, q can be decreased by 1 without violating P0 . In order to maintain P1 ,
however, the decrease q := q – 1 must, in general, be accompanied by a rebuilding of the tree. This
clerical obligation has no analoqgue in heapsort, in which a similar tree is pruned by removing a
leaf; in smoothsort the tree is pruned at its rootand without precautions it would, in general, fall
apart into a forest of subtrees. Smoothsort restores the tree by grafting each subtree of the forest on
the root of the subtree to the right of it.

Note that relation P1 has been inspired by the desire to leave the sequence m untouched
when initially already in ascending order.

Once the shape of the tree for q=N has been chosen, the grafting procedure sketched above
determines the shape of the tree for all smaller values of q . Our desire to construct an algorithm
that would be of order N when m is initially (nearly) sorted forced us to derive the shape of
the next tree from that of the preceding one. This recurrent computation, which heavily depends on
the way in which shapes f trees are represented, is reponsible for much of smoothsort's apparent
complexity.

Edsger W. Dijkstra Hartwig Thomas 2/11

Smoothsort commented transcription EWD796a

The presentation of smoothsort
In our presentation we shall follow the principle of postponing definitions until they are needed

and – as a special case – not introducing variables unti they are needed. The latter leads to so-called
„program projections“. A program is projected on a subset of its variables by omitting the
declarations of its other variables and all statements not assigning to any of the variables of the
subset projected on; the remaining expressions may only depend on the variables of the subset. Each
time we shall give the minimal extension of the subset projected on. In the new statements thereby
introduced, the variables introduced earlier are constants.

This way of program presentation has the advantage of introducing one complication at a time. It
has the disadvantage of hiding the heuristics that led to the algorithm presented; the general outline
and later remarks have been included to overco e this disadvantage as much as possible. (I think that
we shall have to learn to live with the fact that presenting the final design in the most disentangled
way and giving the heuristics – perhaps even in the form of a possible design history – are not
necessarily compatible goals.) Finally I beg the impatient reader to remember that a program
projection – though a legal program – does not make sense in isolation: its sole purpose is to be
extended to something meaningful.

When invariants are given, they precede the repetition of which they are the invariant.

The introduction of q
Projected on the variable q , smoothsort is reduced to

|[q: int; q := 1 { invariant: 1≤q≤N }
 ; do q ≠ N → q := q + 1 od { invariant: 1≤q≤N }
 ; do q ≠ 1 → q := q – 1 od
]|

Variable q denotes the length of the unsorted prefix; the above projection shows that
smoothsort as presented here is only defined for N≥1 .

The introduction of r
Projected on the variables q , r , smoothsort is reduced to

|[q, r int; q := 1; r := 0 { invariant: q−r=constant }
 ; do q ≠ N → q := q + 1; r := r + 1 od { invariant: q−r=constant }
 ; do q ≠ 1 → q := q – 1; r := r - 1 od
]|

Remark 0. Variable r comes in handy in two ways. Firstly because mr is the rightmost
element of the unsorted prefix, and secondly because replacing its initialization r := 0 by r := X will
cause smoothsort to sort the sequence mi , X ≤iX N . Smoothsort accommodates such a shift
of the origin a little bit more easily than heapsort. End of Remark 0.

The introduction of p, b, and c
Invariant P1 states that the unsorted prefix mi : 0≤iq is the postorder traversal f a tree, but

does not define the tree. In this section we shall begin to define the tree for the unsorted prefix of
length q and how the shape of that tree is recorded using the triple p ,b , c .

To this purpose we regard the unsorted prefix mi :0≤iq as a so-called standard
concatenation of so-called stretches.

Edsger W. Dijkstra Hartwig Thomas 3/11

Smoothsort commented transcription EWD796a

A „stretch“ is a subsequence of consecutive elements mi : , h≤ih1 for some hh1 (which
we shall later identify with the postorder traversal of a binary subtree of the tree mentioned in P1
). As we shall see later, it is desirable that the number of stretches that concatenated together
constitute the unordered prefix is relatively small.Stretches, however, don't come in all possible
lengths and when q is not a stretch length we need more stretches to cover mi :0≤iq . The
available stretch lengths are the so-called Leonardo numbers

 41 25 15 9 5 3 1 1 −1

given by LP0=LP1=1 and LPn2=LPn1LPn1 . (The justification for this choice of
available stretch lengths is better postponed.) [In the remarks at the end it is hinted, that smoothsort
could make use of the sizes 2i−1 using balanced binary tree. The recurrency relations would then
have to be replaced by B0=1 and Bn1=2⋅Bn1 . Try it!]

The „standard concatenation“ of a sequence of length q1 consists of the longest stretch with
length ≤q1 , followed by the standard concatenation of the remainder (when not empty).

Remark 1. We leave it as an exercise for the reader to convince himself of the fact that the standard
concatenation of a sequence of given length decomposes that sequence into the minimum number of
stretches. End of Remark 1.

For the sake of the recurrent stretch length computations, we introduce for each length b its
„companion“ c , i.e. we maintain

∃n : n≥0 : b=LPn∧c=LPn−1 ;

here LP−1 is to be taken =−1 . This is achieved by modifying variables b and c using only
„up“ and „down“ defined by

up: b, c := b + c + 1, b and down: b, c := c, b – c – 1 .

The stretches forming a standard concatenation are given by the triple p ,b , c ; more
precisely, with a binary representation of p

 p5 p4 p3 p2 p1 p0 ,

the triple p ,b , c defines the set of stretches LPni for all i such that pi=1 and n
defined by LPn=b∧LPn−1=c .

Note 0. As a first result, the length of the standard concatenation given by the triple p ,b , c can
– destructively – be computed by
 length := 0
 ; do p > 0 →
 if even(p) → p := p/2; up
 | odd(p) → length := length + b; p := (p-1)/2 ; up
 fi
 od .
End of Note 0.
Note 1. The representation is not unique: the operations „p := 2 * p; down“ leave the standard
concatenation represented by the triple p ,b , c unchanged. End of Note 1.

The above coding of a standard concatenation is possible because, with the exception of stretch
length 1, which may occur twice in a standard concatenation – e.g. of length 2 or 7 – , each stretch
length occurs at most once, whereas for stretch length 1 we have LP1 and LP0 at our

Edsger W. Dijkstra Hartwig Thomas 4/11

Smoothsort commented transcription EWD796a

disposal. We adopt the additional convention of recording a single stretch of length 1 as LP1 .

Note 2. We leave it as an exercise for the reader to prove that, as a consequence of the stretch
lengths being Leonardo numbers, in the binary representation of p only the two least significant
1's may be adjacent. This fact will be used in our next projection. End of Note 2.

We now extend the subset of variables projected on by adding the triple p ,b , c satisfying
the invariant

P2: the length of the standard concatenation represented by the triple p ,b , c equals q .
|[q, r, p, b, c: int; q := 1; r := 0; p, b, c := 1, 1, 1 {invariant: P2}
 ; do q ≠ N
 → if p mod 8 = 3
 → p := (p – 1)/2; up; p := (p – 1)/2; up; p := p + 1 { b≥3 }
 | p mod 4 = 1
 → down; p := 2 * p
 ; do b ≠ 1 → down; p := 2*p od; p := p + 1 {b = 1}
 fi; q := q + 1; r := r + 1
 od {invariant: P2}
 ; do q ≠ 1
 → q := q – 1; r := r – 1
 ; if b = 1
 → p := p – 1; do even(p) → p := p / 2; up od {p mod 4 = 1}
 | b >= 3
 → p := p – 1; down; p := 2*p + 1; down; p := 2*p+1 {p mod 8=3}
 fi
 od
]|
Note 3. For the (nonempty!) standard concatenations we have chosen in the above the „normalized“
representation with odd(p). End of Note 3.
Note 4. The assertions at the end of each alternative have been given in order to stress that – as it
should be! – the one repeatable statement is the inverse of the other: assertions in the one reappear
as guards in the other [2]. End of Note 4.
Note 5. The reader may wish to prove that p 's property as described in Note 2 is an invariant of
both repetitions. End of Note 5.
Note 6. The above projection is still of order N . The argument is as follows. In the first
repetition the number of „down's“ is bounded by the number of „up's“, which is certainly less than

2 N . The second repetition is merely the inverse of the first one and the conclusion follows. End
of Note 6.

The introduction of m
At last the time has come to describe how stretches and standard concatenation define which

order relations between elements of m are maintained by smoothsort. We begin with the
stretches, on which the predicates „trusty“ and „dubious“ will be defined. In accordance with the
interpretation of a stretch as the postorder traversal of a binary tree we shall refer to the rightmost
element of a stretch as the „root“ of that stretch.

Denoting a sequence of length LPn by 〈 seqn〉 , we parse for n≥2

〈 seqn〉=〈 seqn−1〉 〈 seqn−2〉 〈root 〉

Edsger W. Dijkstra Hartwig Thomas 5/11

Smoothsort commented transcription EWD796a

where 〈root 〉 stands for a singleton sequence. Stretch 〈 seqn〉 is dubious means that both
〈 seqn−1〉 and 〈 seqn.2〉 are trusty. Stretch 〈 seqn〉 is trusty means that, in addition, the roots of
〈 seqn−1〉 and 〈 seqn.2〉 are at most the root of 〈 seqn〉 ; a stretch of length 1 is by definition

both dubious and trusty. As a consequence, the root of a trusty stretch is the maximum element of
that stretch.

When stretches thus parsed are viewed as postorder traversals of binary trees, trustiness means
that no son exceeds its father. A dubious stretch is made into a trusty one by applying the operation
„sift“ – a direct inheritance from heapsort – to its root, where sift is defined as follows: sift applied
to an element mr1 that is exceede by its largest son mr2 consists of a swap of these two values,
followed by an application of sift to mr2 .

Remark 2. We can now partly justify our choice of the Leonardo numbers as available stretch
lengths, i.e. justify why we have not chosen (with the same recurrence relation)

 33 20 12 7 4 2 1 0 .

The occurrence of length 2 would have required a sift able to deal with fathers having one or two
sons, like the sift required in heapsort; thanks to the Leonardo numbers a father has always two sons
and, consequently, smoothsort's sift is simpler. End of Remark 2.

During the second repetition smoothsort maintains

P3: the stretches of the standard concatenation of the unsorted prefix mi : 0≤iq are all trusty.

During the first one it maintains the weaker

P3': of the standard concatenation of the unsorted prefix mi :0≤iq the rightmost stretch is
dubious; its other stretches are all trusty.

Remark 3. The weaker P3' has been introduced for reasons of efficiency which cannot be explained
now; see, however, Remark 4. End of Remark 3.

So much for the order relations captured by the stretches. In addition, smoothsort maintains
during the second repetition

P4: the roots of the stretches of the standard concatenation of the unordered prefix mi :0≤iq
are ascending from left to right ,

a relation, which is useful since P3∧P4 implies that mr , the rightmost element of the prefix,
is a maxium element of the prefix, and this is the circumstance under which q := q – 1 maintains

P0 . During the first repetition smoothsort maintains the weaker

P4': the roots of the trusty stretches of the standard concatenation of the unordered prefix
mi :0≤iq that are also stretches of the standard concatenation of length N are ascending

from left to right.

We now have to investigate

0) what to add to the first repetition for the maintenance of P3 '∧P4 '
1) what to insert between the two repetitions in order to transform P3 '∧P4 ' into P3∧P4

2) what to add to the second repetition for the maintenance of P3∧P4 .

Investigation 0. In the case p mod 8 = 3, the standard concatenation ends on a dubious stretch of
length b which must be made trusty before it can be combined with the preceding stretch and the

Edsger W. Dijkstra Hartwig Thomas 6/11

Smoothsort commented transcription EWD796a

following element into a new dubious rightmost stretch. This can be achieved by applying sift to
mr . Since no new trusty stretch is added to the standard concatenation, P4 ' is maintained

without further measures.

In the case p mod 4 = 1, the standard concatenation ends on a dubious stretch of length b ,
which in this step becomes the last but one stretch of the standard concatenation and, hence, must be
made trusty. In the case qcN , it suffices to apply sift to mr as before, since this stretch
will later disappear from the standard concatenation. In the case qc≥N , however, just
applying sift to mr might violate P4 ' since this stretch of length b also occurs in the
standard concatenation of length N . Making such a dubious stretch trusty and including its root
in the sequence of ascending roots is achieved by applying „trinkle“ to mr . (As we shall see later,
trinkle is like sift, be it for a partly ternary tree.) End of Investigation 0.

Investigation 1. The reader may prove that it suffices to apply trinkle to mr . End of
Investigation 1.
Investigation 2. In the case b=1 , the standard concatenation loses its last stretch, and P3∧P4
is maintained without further measures.

In the case b≥3 , the rightmost stretch of length b is replaced by two trusty ones; hence
P3 is maintained. To restore P4 it would suffice to apply trinkle first to the root of the first

new stretch and then to the root of the second new stretch, but this would fail to exploit the fact that
the new stretches are already trusty to start with. This is exploited by applying „semitrinkle“ in order
to those roots. End of Investigation 2.

[In keeping with the idiosyncrasies of the author the transcriber has taken the liberty of
renumbering the Investigations to start with 0 rather than 1.]

Remark 4. From a logical point of view it would be perfectly permissible to replace a call on trinkle
by a call on sift, which would make the dubious stretch trusty, followed by a call on semitrinkle,
which would include its root in the sequence of ascending roots. After this substitution, each
iteration of the first repetition starts with a sift and the whole first repetition is immediately followed
by a sift. Since initially the last (and only) stretch is trusty, we can transform the program by
removing all calls on sift and inserting a single call on sift at the end of the repeatable statement of
the first repetition. This is essentially the program transformation that would be required if we
wished to replace P3 ' by P3 . (The collection of trusty stretches being extended, P4 '
would require reformulation.)

The version resulting from the above transformation is however, rejected because a succession of
sift and semitrinkle requires in general more comparisons and swaps than trinkle, as will become
apparent later. This can be remedied by replacing the single call on sift by guarded calls on either sift
or the combination in the form of trinkle (and removal of the calls on semitrinkle from the first
repetition, which have now been catered for). P3 would still be valid, P4 ' would have to be
changed. This version, however, is rejected since it would lead to a duplication of the evaluation of
the guards p mod 8 = 3, etc.. End of Remark 4.

In order to enable the reader to check the code in which the calls on sift, trinkle, and semitrinkle
have been inserted, we give their calling conventions. (These conventions are not to be regarded as a
recommendation: they have been chosen because in this publication I did not want to make any
assumptions about a parameter mechanism.)

Routine sift is applied to the root mr1 of a stretch of length b1 , of which c1 is the
companion. Routine trinkle is applied to the root mr1 of the last stretch of the standard

Edsger W. Dijkstra Hartwig Thomas 7/11

Smoothsort commented transcription EWD796a

concatenation represented by the triple p ,b , c ; this representation need not be normalized.
Routine semitrinkle is applied to the root mr of a stretch of length c which is preceded by the
nonempty standard concatenation represented by the triple p ,b , c ; again this representation is
not necessarily normalized.

Note that „p := (p – 1)/2; p := (p – 1)/2; p := p + 1“ has been simplified to „p := (p + 1)/4“ and
that „r := r – b + c; down; r := r + c“ decreases r by 1.

smoothsort:
|[q, r, p, b, c, r1, b1, c1: int
 ; q := 1; r := 0; p, b, c = 1, 1, 1 {invariant: p3 '∧P4 ' }
 ; do q ≠ N
 → r1 := r
 ; if p mod 8 = 3
 → b1, c1 := b, c; sift; p := (p + 1)/4; up; up
 | p mod 4 = 1
 → if q + c < N → b1, c1 := b, c; sift
 | q + c >= N → trinkle
 fi; down; p := 2*p
 ; do b ≠ 1 → down; p := 2*p od; p := p + 1
 fi; q := q + 1; r := r + 1
 od { P3 '∧P4 ' }; r1 := r; trinkle {invariant: P3∧P4 }
 ; do q ≠ 1
 → q := q – 1
 ; if b = 1
 → r := r – 1; p := p – 1; do even(p) → p := p / 2; up od
 | b >= 3
 → p := p – 1; r := r – b + c
 ; if p = 0 → skip | p > 0 → semitrinkle fi
 ; down; p := 2*p + 1; r := r + c; semitrinkle
 ; down; p := 2*p + 1
 fi
 od
]|

up1:
b1, c1 := b1 + c1 + 1, b1

down1:
b1, c1 := c1, b1 – c1 – 1

sift:
do b1 >= 3 →
 |[r2: int; r2 := r1 – b1 + c1
 ; if m(r2) >= m(r1 – 1) → skip
 | m(r2) <= m(r1 – 1) → r2 := r1 – 1; down1
 fi
 ; if m(r1) >= m(r2) → b1 := 1

Edsger W. Dijkstra Hartwig Thomas 8/11

Smoothsort commented transcription EWD796a

 | m(r1) < m(r2) → m:swap(r1,r2); r1 := r2; down1
 fi
]|
od

semitrinkle:
 r1 := r – c
; if m(r1) <= m(r) → skip
 | m(r1) > m(r) → m:swap(r, r1); trinkle
 fi

Trinkle is very similar to sift when we regard each stretch root as the stepson of the root of the
stretch to its right. Applied to a root without larger sons, trinkle is a skip; otherwise the root is
swapped with its largest son, etc. The trouble with the code is that all sorts of sons may be missing.
In the following trinkle is eventually reduced to a sift, viz.when the stepson relaton is no longer of
interest.

trinkle:
|[p1: int; p1, b1, c1 := p, b, c
 ; do p1 > 0 →
 |[r3: int; do even(p1) → p1 := p1/2; up1 od; r3 := r1 – b1
 ; if p1 = 1 cor m(r3) <= m(r1) → p1 := 0
 | p1 > 1 cand m(r3) > m(r1)
 → p1 := p1 – 1
 ; if b1 = 1 → m:swap(r1, r3); r1 := r3
 | b1 >= 3 →
 |[r2: int; r2 := r1 – b1 + c1
 ; if m(r2) >= m(r1 – 1) → skip
 | m(r2) <= m(r1 – 1)
 → r2 := r1 – 1; down; p1 := 2*p1
 fi
]|
 fi
 fi
]|
 od
]|; sift

And this concludes the code, in which I have abstained from implementation dependent
optimizations.

[For readers unfamiliar with Dijkstra's program notation here are a few hints:

A guarded command c → s is a program statement s preceded by a condition c separated by a „→“.
The program statement s is only executed if the guard c is true. A sequence of guarded commands
uses „|“ as a separator. It is executed by executing any (chosen nondeterministically!) guarded
statement of the sequence with a true guard. A conditional statement is bracketed by „if“ and „fi“
containing a sequence of guarded commands. It executes the guarded command once if there is at
least one true guard, otherwise the program aborts. A repetitive statement is bracketed by „do“ and

Edsger W. Dijkstra Hartwig Thomas 9/11

Smoothsort commented transcription EWD796a

„od“ containing a sequence of guarded commands. It is executed by executing the sequence of
guarded commands repeatedly until none of the guards is true. Statements are sequentially
concatenated using „;“ as a separator (rather than a terminator). Block bracketed by „|[“ and „]|“ are
used for scoping variables.]

In retrospect
While heapsort prunes the tree leaf by leaf, smoothsort prunes the tree at the root, and

immediately one of heapsort's charms is lost: while the tree in heapsort remains beautifully
balanced, the tree in smoothsort can get very skew indeed. So why bother about smoothsort at all?
Well, I wanted to design a sorting algorithm of order N in the best case, of order N⋅log N in
the worst case, and with a smooth transition between the two (hence its name).

This is also the answer to the question why I introduced P4 . By dropping P4 one can
dispense with trinkle and the code becomes much simpler. The price to be paid is a search for the
maximum stretch root in order to establish that m(r) is a maximum element of the unsorted prefix.
Though such a simpler sorting algorithm is quite defensible, I rejected the option because it is never
of the order N .

One can also raise the question why I have not chosen as available stretch lengths:
 63 31 15 7 3 1 which seems attractive since each stretch can then be viewed as the

postorder traversal of a balanced binary tree. In addition, the recurrence relation would be simpler.
But I know why I chose the Leonardo numbers: with balanced binary trees the average number of

stretches is 1.2550 { =1
4
552 log 15−1 } times the average number of stretches with

the Leonardo numbers. (I do not present this ratio as a compelling argument.)

It is possible that others have thought of this algorithm, but have rejected it for valid reasons, as
yet unknown to me. I could not find it in the literature and it is not mentioned in [3], a recent article
that compares five well-known sorting algorithms when fed with initially nearly sorted sequences.
(That article compares Straight Insertion Sort, Shellsort, Straight Merge Sort, Quickersort, and
Heapsort.) If it has not been discovered earlier, I would like to know the reason, because all its
ingredients are well-known since the discovery of heapsort in 1964.

Besides the possible interest in smoothsort I had another reason for developing it to the degree I
did and for writing the above. (It took me three weeks, but I consider them well-spent.) The reason
was that I knew beforehand that in trying to present smoothsort in a way as disentangled as possible
I would encounter considerable difficulties. I hope they have been surmounted sufficiently well.

Acknowledgements
I am greatly indebted to C. S. Scholten and to all the members of the Tuesday Afternoon Club,

with whom I had the privilege of discussing the algorith, its coding, and its presentation. They have
helped me clarifying my own thoughts and have suggested several significant simplifications. I am
furthermore indebted to D. E. Knuth and W. M. Turski for their comments on the previous version
of this text, and to the participants of the Marktoberdorf Summer School, 1981, on whom I could try
out my presentation.

Edsger W. Dijkstra Hartwig Thomas 10/11

Smoothsort commented transcription EWD796a

References
[0] Williams, J. W. J., Algorithm 232 HEAPSORT C.A.C.M., 7, 6 (June 1964), pp. 347-348

[1] Floyd, Robert W., Algorithm 242 TREESORT 3 C.A.C.M., 7, 12 (Dec. 1964), p 701

[2] Bauer, F. L. and Broy, M. (Ed.), Program Construction, Lecture Notes in Computer Science 69,
Berlin, Heidelberg, New York, Springer Verlag 1979, pp 54 – 57

[3] Cook, Curtis R. and Kim, Di Jin, Best Sorting Algorithm for Nearly Sorted Lists, C. A. C. M.,
23, 11 (Nov 1980) pp. 620 – 624

Plataanstraat 5 16.08.81
5671 AL NUENEN prof. dr. Edsger W. Dijkstra
The Netherlands Burroughs Research Fellow

Edsger W. Dijkstra Hartwig Thomas 11/11

